A vanishing result for the first twisted cohomology of affine varieties and applications to line arrangements

Pauline Bailet

Universität Bremen

Arrangement and beyond
June 6-9, 2017
CRM Ennio De Giorgi, Pisa
Joint work with Alexandru Dimca and Masahiko Yoshinaga

A vanishing result for the first twisted cohomology of affine varieties and applications to line arrangements, arXiv:1705.06022
1 Preliminaries: on the affinity of open subsets of projective smooth subsets

2 Local system cohomology of affine varieties: a general vanishing result

3 The special case of line arrangements

4 Applications to the monodromy eigenspaces of the Milnor fiber
1. Preliminaries: on the affinity of open subsets of projective smooth subsets

2. Local system cohomology of affine varieties: a general vanishing result

3. The special case of line arrangements

4. Applications to the monodromy eigenspaces of the Milnor fiber
Let S be a complex projective smooth surface, $D = \sum_{i=1}^{n} D_i \subset S$ a reduced divisor (D_i irreducible) and $U = S \setminus D$ the corresponding complement.
Let S be a complex projective smooth surface, $D = \sum_{i=1}^{n} D_i \subset S$ a reduced divisor (D_i irreducible) and $U = S \setminus D$ the corresponding complement.

Question : When U is affine?
Let S be a complex projective smooth surface, $D = \sum_{i=1}^{n} D_i \subset S$ a reduced divisor (D_i irreducible) and $U = S \setminus D$ the corresponding complement.

Question: When U is affine?

Fact: Recall that U is affine if and only if it exists an effective ample divisor $\widetilde{D} = \sum_{i=1}^{n} a_i D_i$ ($a_i \in \mathbb{Q}_{>0}$).

Proposition (Nakai-Moishezon criterion)

Let L be a line bundle on S. Then L is ample if and only if $L^2 > 0$ and $L \cdot C > 0$ for all irreducible curves $C \subset S$.
Idea: Apply the Nakai-Moishezon criterion to the line bundle $L = \mathcal{O}(\tilde{D})$.
Idea : Apply the Nakai-Moishezon criterion to the line bundle $L = \mathcal{O}(\tilde{D})$.

Remarks :

- it is sometimes possible to consider subdivisors $D' = \sum_{i \in I} a_i D_i$ of D instead of D.
Idea : Apply the Nakai-Moishezon criterion to the line bundle $L = \mathcal{O}(\tilde{D})$.

Remarks :

- it is sometimes possible to consider subdivisors $D' = \sum_{i \in I} a_i D_i$ of D instead of D.

- We need to check the existence of "bad curves" $C \subset S$ such that $C \cap D = \emptyset$ (since in this case $\tilde{D} \cdot C = 0$ and U is not affine).
1. Preliminaries: on the affinity of open subsets of projective smooth subsets

2. Local system cohomology of affine varieties: a general vanishing result

3. The special case of line arrangements

4. Applications to the monodromy eigenspaces of the Milnor fiber
Let S be a smooth proper complex variety of dimension ≥ 2, $D = \sum_{i=1}^{n} D_i \subset S$ a reduced divisor and $U = S \setminus D$ the corresponding complement.
Let S be a smooth proper complex variety of dimension ≥ 2, $D = \sum_{i=1}^{n} D_i \subset S$ a reduced divisor and $U = S \setminus D$ the corresponding complement.

Let \mathcal{L} be a rank one local system on the complement U with monodromy $t_i \in \mathbb{C}^\times$ around each D_i.
Let S be a smooth proper complex variety of dimension ≥ 2, $D = \sum_{i=1}^{n} D_i \subset S$ a reduced divisor and $U = S \setminus D$ the corresponding complement.

Let \mathcal{L} be a rank one local system on the complement U with monodromy $t_i \in \mathbb{C}^\times$ around each D_i.

Aim: Vanishing result for $H^1(U, \mathcal{L})$?
Consider a subdivisor of D:

$$D' = \sum_{i \in I} D_i,$$

where $I \subset [n] = \{1, \ldots, n\}$.

Theorem (Dimca, Yoshinaga, B.)

Assume that

(i) D is normal crossing along D', that is, for any $p \in D'$, D is normal crossing around p.

(ii) $t_i \neq 1$ for $i \in I$.

(iii) $U' = \mathbb{S} \setminus D'$ is an affine variety.

Then $H_1(U', L) = 0$.

Consider a subdivider of D:

$$D' = \sum_{i \in I} D_i,$$

where $I \subset [n] = \{1, \ldots, n\}$.

Theorem (Dimca, Yoshinaga, B.)

Assume that

(i) D is normal crossing along D', that is, for any $p \in D'$, D is normal crossing around p.

(ii) $t_i \neq 1$ for $i \in I$.

(iii) $U' = S \setminus D'$ is an affine variety.

Then $H^1(U, L) = 0$.
1 Preliminaries: on the affinity of open subsets of projective smooth subsets

2 Local system cohomology of affine varieties: a general vanishing result

3 The special case of line arrangements

4 Applications to the monodromy eigenspaces of the Milnor fiber
Let $\mathcal{A} = \{H_1, \ldots, H_n\} \subset \mathbb{P}^2$ be a line arrangement.

Assume that \mathcal{A} is not a pencil of lines.
Let \(\mathcal{A} = \{H_1, \ldots, H_n\} \subset \mathbb{P}^2 \) be a line arrangement.

Assume that \(\mathcal{A} \) is not a pencil of lines.

Let \(\mathcal{L} \) be a rank one local system on the complement

\[
M(\mathcal{A}) = \mathbb{P}^2 \setminus \bigcup_{i=1}^{n} H_i,
\]

with monodromy \(t_i \in \mathbb{C}^\times \) around each \(H_i \).
Assume \(t_i \neq 1 \) for all \(i = 1, \ldots, n \).
Of course, $\bigcup_{i=1}^{n} H_i$ is not a normal crossing divisor!
Of course, $\bigcup_{i=1}^{n} H_i$ is not a normal crossing divisor!

Idea: Do some blowings-ups, find good candidate for the subdivisor D' such that U' is affine and apply our main result.
Given a point $p \in \mathbb{P}^2$, we denote by

$$t_p = \prod_{H_i \ni p} t_i$$

the corresponding total turn monodromy of \mathcal{L}.
Given a point $p \in \mathbb{P}^2$, we denote by

$$t_p = \prod_{H_i \ni p} t_i$$

the corresponding total turn monodromy of \mathcal{L}.

Let $T := \{p \in \mathbb{P}^2 \mid \text{mult}(p) \geq 3\}$. The set T is decomposed into

$$T = T_{\neq 1} \sqcup T_{= 1},$$

where $T_{\neq 1} := \{p \in T \mid t_p \neq 1\}$ are the "good points for \mathcal{L}" and $T_{= 1} := \{p \in T \mid t_p = 1\}$ the "bad points".
Consider $B\ell_T \mathbb{P}^2$ the surface obtained by blowing up the points in T.
Consider $B\ell_T \mathbb{P}^2$ the surface obtained by blowing up the points in T.

Denote by E_p the exceptional divisor for $p \in T$ and by \overline{H}_i the strict transform of the line H_i.
Consider $B\ell_T \mathbb{P}^2$ the surface obtained by blowing up the points in T.

Denote by E_p the exceptional divisor for $p \in T$ and by $\overline{H_i}$ the strict transform of the line H_i.

Remark: The affinity of the complement is a difficult question and depends of the positions of the singularities!
Example

Let $p_1, \ldots, p_\ell \in \mathbb{P}^2$ be distinct points on a line L in \mathbb{P}^2. Let $A_i = \{H_{i,1}, \ldots, H_{i,c_i}\}$ be a set of lines passing through p_i and $A = A_1 \sqcup \cdots \sqcup A_\ell$. We assume that $L \not\in A_i$ and all intersections of A except for p_1, \ldots, p_ℓ are double points. Suppose $t_{p_1} = \cdots = t_{p_\ell} = 1$.
Example

Let $p_1, \ldots, p_\ell \in \mathbb{P}^2$ be distinct points on a line L in \mathbb{P}^2.

Let $A_i = \{H_{i,1}, \ldots, H_{i,c_i}\}$ be a set of lines passing through p_i and $A = A_1 \sqcup \cdots \sqcup A_\ell$. We assume that $L \notin A_i$ and all intersections of A except for p_1, \ldots, p_ℓ are double points. Suppose $t_{p_1} = \cdots = t_{p_\ell} = 1$.

Consider

$$S = B \ell_T \mathbb{P}^2, \quad D = \sum_{i=1}^\ell \sum_{j=1}^{c_i} H_{i,j}.$$

Then the strict transform \overline{L} does not intersect D, $D \cdot L = 0$, and hence $S \setminus D$ is not affine.

Conclusion: When $p_1, \ldots, p_\ell \in T=1$ are colinear, $S \setminus D$ is not affine.
Example

Let $p_1, \ldots, p_6 \in \mathbb{P}^2$ be 6 points such that no three are collinear. Let $A = \{H_1, \ldots, H_9\}$ be the edges of the corresponding hexagon and three diagonals, such that each line H_j contains exactly 2 triple points and 4 nodes. Assume $t_{p_i} = 1$ at all the vertices of the hexagon. Consider

$$ S = B \ell_T \mathbb{P}^2, \quad D = \sum_{i=1}^{9} H_i. $$
Example

Let $p_1, \ldots, p_6 \in \mathbb{P}^2$ be 6 points such that no three are colinear. Let $\mathcal{A} = \{H_1, \ldots, H_9\}$ be the edges of the corresponding hexagon and three diagonals, such that each line H_j contains exactly 2 triple points and 4 nodes.

Assume $t_{p_i} = 1$ at all the vertices of the hexagon.

Consider

$$S = B\ell_T \mathbb{P}^2, \quad D = \sum_{i=1}^{9} \overline{H_i}.$$

The ampleness of D depends on the position of the six points p_1, \ldots, p_6:

if p_1, \ldots, p_6 are lying on a conic C, then $\overline{C} \cap D = \emptyset$ and $D \cdot \overline{C} = 0$.

Conclusion: When $p_1, \ldots, p_6 \in T_{\leq 1}$ are lying on a conic, $S \setminus D$ is not affine.
Conclusion: We need to control the existence of "bad curves" as in the previous examples. This can be done by considerations on the degree of the curve, the multiplicity of the curve at the intersection points in $T_{=1}$, and the multiplicity of the points in the arrangement.
Some applications to our main Theorem:
Some applications to our main Theorem:

Some applications to our main Theorem:

Example (Cohen-Dimca-Orlik)

Let \mathcal{A} be a line arrangement in \mathbb{P}^2 and \mathcal{L} a rank one local system on the complement $M(\mathcal{A})$. Suppose there exists a line $H_k \in \mathcal{A}$ such that $H_k \cap T_{=1} = \emptyset$. Then $H^1(M(\mathcal{A}), \mathcal{L}) = 0$.

Some applications to our main Theorem:

Example (Cohen-Dimca-Orlik)

Let \mathcal{A} be a line arrangement in \mathbb{P}^2 and \mathcal{L} a rank one local system on the complement $M(\mathcal{A})$. Suppose there exists a line $H_k \in \mathcal{A}$ such that $H_k \cap T_{\neq 1} = \emptyset$. Then $H^1(M(\mathcal{A}), \mathcal{L}) = 0$.

Take:

- $S = B \ell_{T \cap H_k} \mathbb{P}^2$
- $D = \sum_{i=1}^{n} \overline{H_i} + \sum_{p \in T \cap H_k} E_p$
- $D' = \overline{H_k} + \sum_{p \in T \cap H_k} E_p$.
Remarks:

- This example follows from Libgober:

- The result of Cohen-Dimca-Orlik is a generalization of Libgober’s result.
Proposition

Let A be a line arrangement in \mathbb{P}^2 and \mathcal{L} a rank one local system on the complement $M(A)$. Suppose there exists a line $H_k \in A$ such that

$$H_k \cap T_{=1} = \{p\},$$

and assume that there is no line L in \mathbb{P}^2, passing through the point p and such that $L \cap A \subset T_{=1}$. Then $H^1(M(A), \mathcal{L}) = 0$.
Proposition

Let \mathcal{A} be a line arrangement in \mathbb{P}^2 and \mathcal{L} a rank one local system on the complement $M(\mathcal{A})$. Suppose there exists a line $H_k \in \mathcal{A}$ such that

$$H_k \cap T_{=1} = \{p\},$$

and assume that there is no line L in \mathbb{P}^2, passing through the point p and such that $L \cap \mathcal{A} \subset T_{=1}$. Then $H^1(M(\mathcal{A}), \mathcal{L}) = 0$.

Take:

- $S = B\ell_T \mathbb{P}^2$
- $D = \sum_{i=1}^n H_i + \sum_{p \in T} E_p$
- $D' = \overline{H}_k + \sum_{i \mid p \notin H_k} \overline{H}_i + \sum_{q \in T_{\neq 1}} E_q$.
Note that this result was known for real line arrangements without the extra condition on the line L:

1 Preliminaries: on the affinity of open subsets of projective smooth subsets

2 Local system cohomology of affine varieties: a general vanishing result

3 The special case of line arrangements

4 Applications to the monodromy eigenspaces of the Milnor fiber
The **Milnor fiber** of \mathcal{A} is the smooth affine hypersurface defined by

$$F = Q_{\mathcal{A}}^{-1}(1) \subset \mathbb{C}^3,$$

where

$$Q_{\mathcal{A}}(x, y, z) = \prod_{i=1}^{n} \alpha_i(x, y, z),$$

with $H_i := \{\alpha_i = 0\}$.
Monodromy

Let $\lambda = \exp(2i\pi/n)$, $n = |A|$. The monodromy on F is :

$$h : F \rightarrow F$$

$$x \mapsto \lambda \cdot x$$

We denote by

$$h^1 : H^1(F, \mathbb{C}) \rightarrow H^1(F, \mathbb{C})$$

the monodromy operator.
Let $\lambda = \exp(2i\pi/n)$, $n = |A|$. The **monodromy** on F is:

$$h : F \rightarrow F$$

$$x \mapsto \lambda \cdot x$$

We denote by

$$h^1 : H^1(F, \mathbb{C}) \rightarrow H^1(F, \mathbb{C})$$

the **monodromy operator**.

Open question: Is h^1 determined by the arrangement’s combinatorics? (Remark that h^2 can be deduced from h^1).
We have the decomposition in eigenspaces:

\[H^1(F, \mathbb{C}) = \bigoplus_{\beta \mid \beta^n = 1} H^1(F, \mathbb{C})_\beta, \]

where \(H^1(F, \mathbb{C})_\beta = \ker(h^1 - \beta \cdot Id). \)
We have the decomposition in eigenspaces:

\[H^1(F, \mathbb{C}) = \bigoplus_{\beta \mid \beta^n = 1} H^1(F, \mathbb{C})_{\beta}, \]

where \(H^1(F, \mathbb{C})_{\beta} = \ker(h^1 - \beta \cdot \text{Id}) \).

Fact:

\[H^1(F, \mathbb{C})_{\beta} = H^1(M(A), \mathcal{L}_\beta), \]

where \(\mathcal{L}_\beta \) is the rank one local system on the complement \(M(A) \) such that the monodromy \(t_i \) around each hyperplane \(H_i \) is \(\beta \).
The computation of local system cohomology of complement is related with:

- sheaves theory
- minimality
- graph theory
The computation of local system cohomology of complement is related with:

- sheaves theory
- minimality
- graph theory

We can use our main result to prove the vanishing of the monodromy eigenspaces $H^1(F, \mathbb{C})_\beta = H^1(M(\mathcal{A}), \mathcal{L}_\beta)$.
Application 1

Corollary (Ceva arrangement)

The monodromy eigenspaces $H^1(F, \mathbb{C})_\beta$ of the Milnor fiber cohomology for the monomial arrangement a.k.a. the Ceva arrangement

$$A(m, m, 3) : (x^m - y^m)(y^m - z^m)(x^m - z^m) = 0$$

are trivial if $\beta^3 \neq 1$, for any $m \geq 3$.
Remarks :

- We can eliminate eigenvalues with A. Libgober’s result.

- The eigenvalues $\beta^3 = 1, \beta \neq 1$ have already been determined:

- This result was previously established in:

Application 2

Consider the reflection arrangement $\mathcal{A}(G_{31})$ in \mathbb{C}^4, defined by the equation $f = 0$, where

$$
f = xyzt(x^4 - y^4)(x^4 - t^4)(y^4 - z^4)(y^4 - t^4)(z^4 - t^4)
$$

$$
((x-y)^2 - (z+t)^2)((x-y)^2 - (z-t)^2)((x+y)^2 - (z+t)^2)((x+y)^2 - (z-t)^2)
$$

$$
((x-y)^2 + (z+t)^2)((x-y)^2 + (z-t)^2)((x+y)^2 + (z+t)^2)((x+y)^2 + (z-t)^2)
$$

$$
((x-z)^2 + (y+t)^2)((x-z)^2 + (y-t)^2)((x+z)^2 + (y+t)^2)((x+z)^2 + (y-t)^2)
$$

$$
((x-t)^2 + (y+z)^2)((x-t)^2 + (y-z)^2)((x+t)^2 + (y+z)^2)((x+t)^2 + (y-z)^2).
$$
Application 2

Consider the reflection arrangement $\mathcal{A}(G_{31})$ in \mathbb{C}^4, defined by the equation $f = 0$, where

$$f = xyzt(x^4 - y^4)(x^4 - z^4)(x^4 - t^4)(y^4 - z^4)(y^4 - t^4)(z^4 - t^4)$$

$$((x-y)^2-(z+t)^2)((x-y)^2-(z-t)^2)((x+y)^2-(z+t)^2)((x+y)^2-(z-t)^2)$$

$$((x-y)^2+(z+t)^2)((x-y)^2+(z-t)^2)((x+y)^2+(z+t)^2)((x+y)^2+(z-t)^2)$$

$$((x-z)^2+(y+t)^2)((x-z)^2+(y-t)^2)((x+z)^2+(y+t)^2)((x+z)^2+(y-t)^2)$$

$$((x-t)^2+(y+z)^2)((x-t)^2+(y-z)^2)((x+t)^2+(y+z)^2)((x+t)^2+(y-z)^2).$$

Proposition (Reflection arrangement)

Let $\mathcal{A}(G_{31})$ be the reflection arrangement in \mathbb{C}^4 corresponding to the exceptional group G_{31}, and let F be the associated Milnor fiber. Then the monodromy action on $H^1(F, \mathbb{C})$ is the identity.
Remark: This result was previously established in:

Remark : This result was previously established in :

Thank you very much for your attention!